3x[4x-3(x+5)]+19=2(x-23)

Simple and best practice solution for 3x[4x-3(x+5)]+19=2(x-23) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x[4x-3(x+5)]+19=2(x-23) equation:


Simplifying
3x[4x + -3(x + 5)] + 19 = 2(x + -23)

Reorder the terms:
3x[4x + -3(5 + x)] + 19 = 2(x + -23)
3x[4x + (5 * -3 + x * -3)] + 19 = 2(x + -23)
3x[4x + (-15 + -3x)] + 19 = 2(x + -23)

Reorder the terms:
3x[-15 + 4x + -3x] + 19 = 2(x + -23)

Combine like terms: 4x + -3x = 1x
3x[-15 + 1x] + 19 = 2(x + -23)
[-15 * 3x + 1x * 3x] + 19 = 2(x + -23)
[-45x + 3x2] + 19 = 2(x + -23)

Reorder the terms:
19 + -45x + 3x2 = 2(x + -23)

Reorder the terms:
19 + -45x + 3x2 = 2(-23 + x)
19 + -45x + 3x2 = (-23 * 2 + x * 2)
19 + -45x + 3x2 = (-46 + 2x)

Solving
19 + -45x + 3x2 = -46 + 2x

Solving for variable 'x'.

Reorder the terms:
19 + 46 + -45x + -2x + 3x2 = -46 + 2x + 46 + -2x

Combine like terms: 19 + 46 = 65
65 + -45x + -2x + 3x2 = -46 + 2x + 46 + -2x

Combine like terms: -45x + -2x = -47x
65 + -47x + 3x2 = -46 + 2x + 46 + -2x

Reorder the terms:
65 + -47x + 3x2 = -46 + 46 + 2x + -2x

Combine like terms: -46 + 46 = 0
65 + -47x + 3x2 = 0 + 2x + -2x
65 + -47x + 3x2 = 2x + -2x

Combine like terms: 2x + -2x = 0
65 + -47x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
21.66666667 + -15.66666667x + x2 = 0

Move the constant term to the right:

Add '-21.66666667' to each side of the equation.
21.66666667 + -15.66666667x + -21.66666667 + x2 = 0 + -21.66666667

Reorder the terms:
21.66666667 + -21.66666667 + -15.66666667x + x2 = 0 + -21.66666667

Combine like terms: 21.66666667 + -21.66666667 = 0.00000000
0.00000000 + -15.66666667x + x2 = 0 + -21.66666667
-15.66666667x + x2 = 0 + -21.66666667

Combine like terms: 0 + -21.66666667 = -21.66666667
-15.66666667x + x2 = -21.66666667

The x term is -15.66666667x.  Take half its coefficient (-7.833333335).
Square it (61.36111114) and add it to both sides.

Add '61.36111114' to each side of the equation.
-15.66666667x + 61.36111114 + x2 = -21.66666667 + 61.36111114

Reorder the terms:
61.36111114 + -15.66666667x + x2 = -21.66666667 + 61.36111114

Combine like terms: -21.66666667 + 61.36111114 = 39.69444447
61.36111114 + -15.66666667x + x2 = 39.69444447

Factor a perfect square on the left side:
(x + -7.833333335)(x + -7.833333335) = 39.69444447

Calculate the square root of the right side: 6.300352726

Break this problem into two subproblems by setting 
(x + -7.833333335) equal to 6.300352726 and -6.300352726.

Subproblem 1

x + -7.833333335 = 6.300352726 Simplifying x + -7.833333335 = 6.300352726 Reorder the terms: -7.833333335 + x = 6.300352726 Solving -7.833333335 + x = 6.300352726 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.833333335' to each side of the equation. -7.833333335 + 7.833333335 + x = 6.300352726 + 7.833333335 Combine like terms: -7.833333335 + 7.833333335 = 0.000000000 0.000000000 + x = 6.300352726 + 7.833333335 x = 6.300352726 + 7.833333335 Combine like terms: 6.300352726 + 7.833333335 = 14.133686061 x = 14.133686061 Simplifying x = 14.133686061

Subproblem 2

x + -7.833333335 = -6.300352726 Simplifying x + -7.833333335 = -6.300352726 Reorder the terms: -7.833333335 + x = -6.300352726 Solving -7.833333335 + x = -6.300352726 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '7.833333335' to each side of the equation. -7.833333335 + 7.833333335 + x = -6.300352726 + 7.833333335 Combine like terms: -7.833333335 + 7.833333335 = 0.000000000 0.000000000 + x = -6.300352726 + 7.833333335 x = -6.300352726 + 7.833333335 Combine like terms: -6.300352726 + 7.833333335 = 1.532980609 x = 1.532980609 Simplifying x = 1.532980609

Solution

The solution to the problem is based on the solutions from the subproblems. x = {14.133686061, 1.532980609}

See similar equations:

| 2r=6r^4+r^3-7r^2-8r | | 5(4x+3)-(2x+7)=10 | | 40(p^2-1)=39 | | 5(2x+2)=5(x+3)+2x | | 2x-8=x-1 | | 3*[4x-3(x+5)]+19=2(x-23) | | 5(4-t)-(2-3t)=9 | | 3x-6=(-6) | | -5(7y+8)= | | 3t(3t)+2t-3=0 | | -2(3z+7)= | | 3x^2+3x+2= | | 5(x+5)-22= | | X^2-10n=0 | | y=-3(5+2x)-7 | | (4xq)+(12x(1-q))=(16xq)+(8x(1-q)) | | r+20=9r-4 | | 9S^2-49= | | y=-1+3(m+4) | | 22.8=18x | | (6y^2+5)+(-3y^2-8)= | | 0=-1x+3 | | -(3x+5)+(2x+6)+1=-5(x-1)+(3x+2)+3 | | x=.2(2*3.14*2x+3) | | 25S^2-121= | | y=3n+3(1+8n) | | y=-3p-(-8+4p) | | q(1)+(1-q)(-1)= | | 5x^4+25x+15=0 | | 3x^4+16x+9=0 | | 4x+2=6x-1 | | 49B^2-F^2= |

Equations solver categories